Electric Power Group Presents Operationalizing Phasor Technology

Welcome!

The presentation will begin at: 2:00 p.m. EDT / 11:00 a.m. PDT November 19, 2013

Webinar Teleconference Number: 1-650-479-3208 Access code: 662 746 127

Please mute your phone during the presentation. We will address questions at the end. Thank you for your cooperation.

For any technical issues with this webinar, please contact Kosareff@electricpowergroup.com or call (626) 685–2015

Operationalizing Phasor Technology

Phasor Simulations: How Can They Be Used in Operations?

Webinar

Nov 19, 2013

Presented by Bharat Bhargava

Electric Power Group

Webinar Outline

- Today's Topic: Phasor Simulations How Can They be Used in Operations
 - What are Phasor Simulations ?
 - Why are Phasor Simulations needed?
 - EPG Phasor Simulation Method Overview
 - Phasor Simulations Case Studies and Use Case Examples
 - Trip of Palo Verde Units
 - Pacific DC Intertie (PDCI) oscillations Jan 2008
 - Pacific Southwest Blackout Sep 2011
 - Phasor Simulations How Can They Used in Operations
- Upcoming Webinars Schedule
- Q&A

Synchrophasor Technology in Control Rooms Monitor, Diagnose and Act

Operator's Mission: Keep the lights on!

What Are Phasor Simulations?

Phasor Simulations

- Generate Dynamic Simulations of events, cases and operating scenarios
- Cover a Wide Area Real Time View of Simulated Events as they Unfold
- Provide Operators with Visibility of Dynamic Metrics such as Phase Angles, Oscillations and Sensitivities
- Enables Operators to Monitor, Diagnose and Act with streaming simulated results on a real time phasor application platform (like RTDMS)
- Allow testing of alternate operator actions and observe impact on grid operations

Phasor Simulations are performed to:

- Simulate Extreme Events Static and Dynamic
- Visualize Extreme Events Wide Area View
- Analyze Grid Performance During Extreme Events Frequency Response, Oscillations, Damping, Phase Angles, Sensitivities

Why Are Phasor Simulations Needed?

- Phasors provide additional and different insights compared to SCADA. For example:
 - Higher resolution allows visibility of event signatures; System dynamics and dynamic metrics like phase angles, oscillation, damping, voltage sensitivity; Wide area situational awareness for prognosis is available
- Operators need to be trained on phasor technology, dynamic metrics, visualization as well as interpretation of EMS information along with phasor dynamics
- Currently, companies rely on use of recorded events this approach has several shortcomings
 - Significant events don't happen very frequently
 - Data streams from recorded data are often of bad quality making use of events for training unsatisfactory
 - Event data is proprietary, inhibiting knowledge sharing and wide area view
- Recorded events do not cover some of the critical contingencies that may result in cascading blackouts i.e., N-n situations as was the case for 1996 Western Interconnection, 2003 Eastern Interconnection, and 2011 Pacific Southwest blackouts

EPG Phasor Simulation Method - Overview

Real Time Operator Interactions with Phasor Simulations

- Real Time Wide Area Situational Awareness
- Phase Angle Differences
- Voltage and Angle Sensitivities
- Frequency Stability Monitoring
- Monitoring Oscillations, Damping
- Oscillation Detection
- Islanding Detection
- Intelligent Alarms

EPG Phasor Simulator Overview

EPG Phasor Simulator for Operator Training (PSOT[®])

Comparison

SCADA Simulations

- Provides Steady State Simulation of the Electrical Network from the Perspective of the Operator
- Do not provide wide-area_situational awareness
- Dynamics are not available, observable, simulated. Steady state results are available
- Resolution *every 2-4 sec*.
- Static series of snapshots

SCADA Simulations

- Provides Dynamic Simulation of the Electrical Network from the Perspective of the Operator
- Wide Area Situational Awareness is provided
- Dynamics like phase angles, sensitivities, oscillation, damping, are only available through phasors
- High Resolution- 30 samples/sec.
 visibility of transients, signatures
- Streaming like a full motion video. Can see trends, changes, movement in real time

Simulation Vs. SCADA OTS Vs. Phasor Simulations

Dynamic Simulation Output (PSLF, PSSE, Power World, etc.)

	" "ALA	HITOS W.ALAMITOS	W 230kV BUS.VM"	"ALAMIT	OS W.ALAMIT	S W 230kV BUS.VA"	"ALAMITOS W.J	LAMITOS	N 230kV FREQUENCS	(.FR" "ALS	MITOS W.ALAMI
	59785	-0.100356	60 0	0.00000	2 0.1	093409 60	0 244.	13101	0.112389	60 0	539.84130
	10785	-0.100356	0 03	0.00000	2 0.1	03 004201	0 244	13101	0.112389	60 03	539.84130
	228.666855	-0.100361	60 0	0.00000	2 0.1	93403 60	0 244.	10782	0.112387	60 0	539.82586
	8.666122 -0.1	0359 60.0	0 8000	0.00000	2 0.1	93412 60.00	0031 0	244.9	10202 0.1123	60.0	0004 0
	228.665604	-0.100358	60.000008	0	0.000002	0.093415	60.000038	0	244.90979	0.112389	60.000008
	228.665482	-0.10036	60 0	0.00000	2 0.1	9341 60.000019	0 244.	09592	0.112388	60.000004	0 5
0.0125 2	28.665997 -0.1	10361 59.9	99996 0	0.00000	2 0.1	93408 60.00	0011 0	299.9	09485 0.112:	60.0	0004 0
0.016666	228.665421	-0.100361	59.999996	0	0.000002	0.093409	60.000015	0	244.909332	0 112389	60.000004
0.020833	228.665405	-0.100363	59.999992	0	0.000002	0.093406	60 0	244.9	09164 0.1123	60.0	0004 0
0.025 2	28.665222 -0.1	10364 59.9	99989 0	0.00000	2 0.1	93403 59.99	9989 0	244.9	09073 0.1123	887 60	0 5
0.029166	228.664642	-0.100364	59.999992	0	0.000002	0.093405	60 0	244.9	0892 0.1123	887 60	0 5
0.033333	228.664429	-0.100364	59.999992	0	0.000002	0.093407	60.000008	0	244.908798	0 112388	60 0
0.037499	228.664566	-0.100365	59.999989	0	0.000002	0.093404	59.999996	0	244.908859	0 112387	60 0
0.041666	228.664658	-0.100367	59.999985	0	0.000002	0.093398	59.999977	0	244.908966	0 112385	59.999992
0.045833	228.66478	-0.100369	59.999981	0	0.000002	0.093394	59.999966	0	244.909103	0 112384	59.999989
0.049999	228.664673	-0.10037	59.999977	0	0.000002	0.093392	59.999962	0	244.909164	0 112383	59.999989
0.054166	228.664429	-0.100371	59.999977	0	0.000002	0.09339 59.99	9958 0	244.9	09164 0.1123	59.9	9985 (
0.058332	228.664291	-0.100373	59.999973	0	0.000002	0.093386	59.99995	0	244.90921	0 112381	59.999985
0.062499	228.664368	-0.100375	59.999969	0	0.000002	0.093381	59.999939	0	244.909378	0 112379	59.999971
0.066666	228.664536	-0.100376	59.999966	0	0.000002	0.093378	59.999931	0	244.909576	0 112377	59.999971
0.070832	228.664658	-0.100377	59.999966	0	0.000002	0.093376	59.999935	0	244.909729	0 112377	59.999977
0.074999	228.664734	-0.100379	59.999962	0	0.000002	0.093371	59.999924	0	244.909851	0 112375	59.999973
0.079165	228.66481	-0.100382	59.999954	0	0.000002	0.093364	59.999908	0	244.909958	0 112373	59.999969
0.083332	228.66449	-0.100384	59.999954	0	0.000002	0.093363	59.999912	0	244.909958	0 112372	59.999966
0.087499	228.664017	-0.100385	59.999954	0	0.000002	0.093362	59.999916	0	244.909866	0 11237 59.9	9966 0
0.091665	228.664322	-0.100388	59.99995	0	0.000002	0.093354	59.999897	0	244.910126	0 112368	59.999958
0.095832	228.665039	-0.100393	59.999939	0	0.000002	0.093339	59.999859	0	244.910583	0 112363	59.999941
0.099998	228.665558	-0.100399	23.33335	0	0.000002	0.093321	23.333813	0	244.911057	112357	24.999933
0.104165	228.66597	-0.100407	24.444402	0	0.000002	0.093301	23.333163	0	299.911595	11235 59.5	AA10 0
0.100332	220.000031	-0.100415	53.333000		0.000002	0.093278	53.333/14		211.312133	112012	59.99909
0.112490	220.00/020	-0.100425	53.333600		0.000002	0.093232	53.333655		244.010710	112000	59.9995/1
0.120891	220.000039	-0.100436	59.99901	0	0.000002	0.093223	59.999300	0	244.914429	112322	
0.124000	223.609017	-0.100440	59.99901/	0	0.000002	0.093166	59.999331	ő	244.014009	1123 50 6	
0.129165	228,671173	-0.100433	50.000775	ő	0.000002	0.093141	50.000443	0	244.015350	11220 59.5	
0 199991	228 671478	-0.100482	59 99976	ň	0.000002	0.093121	50 000428	ň	244 915405	11228 59 9	
0.137498	228,671524	-0.100492	59,999752	ŏ	0.000002	0.093106	59,999428	ŏ	244,915222		
0.141664	228,671448	-0.100499	59,999748	0	0.000002	0.093096	59,999443	0	244,91478		
0.145831	228,67131	-0.100505	59,999744	0	0.000002	0.09309 59.99	947 0	244.9	14154 0.1123	257	
0.149998	228,670975	-0.100511	59,999748	0	0.000002	0.093087	59,999504	0	244.913269		
0.154164	228,670349	-0.100516	59,999752	0	0.000002	0.093087	59,999546	0			
0.158331	228.669418	-0.100521	59.99976	0	0.000002	0.093091	50.00				
0.162497	228.66835	-0.100523	59.999771	0	0.000002	0.093098					
0.166664	228.667282	-0.100526	59.999783	0	0.000002						
0.170831	228,666321	-0.100527	59.999794	0	0.000002						
0.174997	228.66539	-0.10053	59,999805	0	0						
0.179164	228.664536	-0.100532	59.999813	0							
	-										

Simulation Vs. SCADA OTS Vs. Phasor Simulations

SCADA Steady State Simulation (OTS)

Simulation Vs. SCADA OTS Vs. Phasor Simulations

Phasor Simulations

Case Studies

- 1. Palo Verde Unit Trip Dynamic Stress Scenarios
- 2. Pacific DC Intertie (PDCI) Oscillations Jan 2008
- 3. Pacific Southwest Blackout Event Sep 2011

Case Study 1 – Palo Verde Unit Trip Dynamic Stress Scenarios

Description of the Case:

- Load on the California Oregon Intertie (COI) is 5480 MW
- Dynamic Stress situations are simulated by tripping Palo Verde Units in succession
 - Unit 1 is tripped
 - Unit 2 is tripped (Units 1 & 2 tripped)

Starting (Base) State:

COI Loading	Grand Coulee - Devers Angle Difference (Static)	Stress Condition		
5480 MW	106°	Stressed		

Palo Verde Unit Trip

Palo Verde Unit Trip Summary

COI Loading	Base Case	1 Unit (1370 MW) Trip	2 Unit (1370 MW) Trip
5480	106° (Safe)	126° (Vulnerable)	Voltage Collapse
MW		High Stress	and Separation

Operators able to see in real time /streaming:

- Alarms get triggered
- Angle Differences increase system vulnerable
- Signature of generator trip
- Power flow oscillating
- Voltage drop
- Unit 2 trip: Angles increase sharply (signature of separation)
- Voltage collapse

Palo Verde Unit Trip - Dynamic Stress Scenarios

ALARMS – Voltage, Angle Difference, Power Flow & Sensitivity

- Reduce COI Power Flow to reduce angle difference between Devers and Grand Coulee
 - options
 - Drop load in South
 - Increase generation in South
- Add voltage support at Malin substation

- Large generation loss in Southern area
- Large Angle Swings
- Large voltage drop at Malin substation
- Vulnerability to Cascade and Separation when GC-Devers angle difference exceeds 120°

What can operators learn in training?

- Understand angle difference is a good indicator of grid stress
- Estimate available margin
- Assess alternative corrective actions

Case Study 2 – Pacific DC Intertie (PDCI) Oscillations Simulation of a real event

- Event occurred on January 26, 2008
- High frequency oscillations occurred at the two ends of the PDCI line at Celilo and Sylmar
- Damping dropped below 2 %
- Simulation shows high frequency oscillations occurring on power, voltage and frequency at Celilo and Sylmar
- Damping is below 2 % in simulations matching the event

Pacific DC Intertie (PDCI) Oscillations

SCADA vs Phasors

Sylmar frequency

PDCI Oscillations

ALARMS - Low damping, Power oscillations on PDCI

NONITOR WIDE AREA VISUALIZATION SONS What can operators learn in training?

- Recognize event signatures
- Pinpoint source/sink of oscillations
- Evaluate alternate corrective actions

Root Cause of Oscillations – Celilo (Northern Terminal of PDCI)

Block PDCI - oscillations stop

Case Study 3 – Pacific Southwest Blackout Simulation of a real event

- Event occurred on Sep 8, 2011 and took about 12-minutes
- Simulation Created Based on Sequence of Events in NERC/FERC report
 - Outage of Hassayampa-North Gila line
 - Outage of IID transformers
 - Load drop in IID and CFE
 - Loss of CFE and IID generation
 - Separation of SDGE at San Onofre Nuclear Gen. Station (SONGS)
- Simulation results match the event
- Simulation developed to validate event and train operators

Pacific Southwest Blackout

Comparison of South of SONGS currents

Electric Power Group

Pacific Southwest Blackout

Pacific Southwest Blackout (Simulation replay: Just after start of event)

Angle Differences in Southwest increase and get alarmed. Simulations enable operators to test corrective actions.

Pacific Southwest Blackout Alarm Panel

Alarms just after start of event

Alarms just before system separation

The number and severity of alarms triggered increases as the event worsens. Operators can evaluate corrective actions to prevent worsening of event and cascading.

Pacific Southwest Blackout

ALARMS – Multiple Angle differences, Devers bus voltage & sensitivity, Power flow on South of SONGS

- Reduce power flow on South of SONGS
 - Drop load in SDGE
 - Increase generation in SDGE
- Add voltage support at Devers substation

- Heavy power transfers from SCE to SDGE
- System in insecure state

What can operators learn in training?

- How the events unfolded?
- What thresholds were violated?
- Evaluate alternative actions at each phase?

Phasor Simulations: How Can They be Used in Operations?

Phasor Simulations: How Can They be Used in Operations?

- Visualize and analyze extreme events
- Familiarize operators with alarms and metrics and how to use them to diagnose and act in real time
- Understand event signatures:
 - Line trip
 - Generation drop
 - Oscillations
- Assess grid performance after event scenarios frequency response, sensitivities, phase angle differences
- Learn from past significant events actual events and alternate outcomes with operator actions
- Identify key stress points and flow gates for monitoring
- Test and validate alarms / alert levels
- Validate models system performance, generator models, load models
- Understand grid behavior under a variety of operating scenarios and be better equipped to monitor, diagnose and take timely corrective actions to prevent cascades and major blackouts
- Develop and test operating procedures/ guidelines

Using Simulations in Operations Key Takeaways

Extreme Event Simulations + What If Exercises For Operator Training

Grid Stress = Monitor Dynamic Metrics

Test Effectiveness of Alternative Operator Actions for Stability:

- Redispatch Generation
- Shed Load
- Provide Voltage Support

Grid Stress Diagnostics:

- Line Trip
- Load Trip
- Generation Trip
- Cascade
- Wide Area, Regional or Local

EPG Webinar Series

Webinars are planned monthly, on the third Tuesday of each month from 11 a.m. to 12 Noon Pacific. The webinar topic list includes:

- System Events Deciphering the Heartbeat of the Power Grid (Jul 16)
- Using Synchrophasor Technology For Real-Time Operation and Reliability Management (Aug 20)
- Phase Angle Differences What They Mean and How to Use Them For Operations (Sep 17)
- Establishing Alarm Limits For Use in Operations (Oct 8)
- Phasor Simulations How Can They Be Used in Operations? (Nov 19)
- NOTE: No Webinar in December, 2013
- Using Synchrophasor Technology to identify Control System Problems (Jan 21, 2014)
- Model Validation (Feb 17, 2014)

Your feedback and suggestions are important! PLEASE do let us know...

Thank You!

201 S. Lake Ave., Suite 400 Pasadena, CA 91101 (626)685-2015 www.ElectricPowerGroup.com

