Electric Power Group Webinar

Welcome!

The meeting will begin at 11:00 AM. PT October 17, 2018

Today's Topic: PGDA New Features and Demonstrations

Registration URL: https://electricpowergroup2.webex.com/ Webinar Teleconference Number: 1 887 668 4493 Access code: 400 683 840

Please mute your phone during the presentation – Q & A Planned at the End

For any technical issues with this webinar, please contact hudson@electricpowergroup.com or call (626) 685–2015

Phasor Grid Dynamics Analyzer (PGDA) webinar

NEW FEATURES AND DEMO

VIKRAM CHILUKA

Electric Power Group

251 S. Lake Ave., Ste. 300 Pasadena, CA 91101 626-685-2015

Today's Plan

- PGDA Tool and uses
- PGDA Industry applications
- Overview existing features
- Overview new features
- Demonstration of new features
 - > Create System level Model validation report
 - > Searcher function
 - > Fault Analysis
- Q & A
- Summary

PGDA - The Tool and Its Uses

PGDA is a standalone application for offline analysis and is used for :

Oscillation Detection

- **Comparative Analysis**
- **Disturbance Analysis and Root Cause Assessment**
- □ Baseline Daily Performance & Establish Safe Operating Ranges
- **Generator Frequency Response Analysis**
- Model Validation

Gamma Stability Assessment

PGDA – Industry applications

PGDA Existing Features and Capabilities

PGDA – 12 new major capabilities

)emo

New Features - 8

1. Automatic System level model validation report according to NERC MOD 033-1

2. Harmonic evaluation for IEEE 519 Standard

3. Intelligent searcher function Demo 2

4. Phasor converter

- 5. Enhanced Pseudo signal calculator
- 6. Peak to Peak magnitude for Spectral, Modal
- 7. Supports Open historian database
- 8. Align multiple COMTRADE files according to trigger time

Enhancements - 3

- Simplified parameters for Oscillation (Spectral, Ringdown, Modal) and Event analysis
- 2. Color schemes
- 3. Global bad data filter will be auto applied to all signals

1. Fault analysis

- Fault Location
- Mho characteristics
- Fault ride throughs Voltage and Frequency

System Model Validation Report

6 Steps for creating System Model Validation Report

- 1. Load PMU data file
- 2. Load simulated data file
- 3. Shift time stamp to align simulated and PMU data
- 4. Using Time Series Plots:
 - > Plot simulated and PMU data for different metrics
 - > Determine the steady state and dynamic state
- 5. Set the thresholds to determine acceptability
- 6. Generate the report

System Model Validation Report

Differences table

Steady State Analysis

Frequency Results

Substation/Bus	Max Difference (mHz)	M in Difference (mHz)	Average Difference (mHz)			
TimeSeries-1	31.01	16.39	22.66			
Bus Voltage Results	5					
Substation/Bus	Max Difference (KV)	M in Difference (KV)	Average Difference (KV)			
TimeSeries-2	0.21	0	0.09			
Line Flows Results						
Substation/Bus	Max Difference (MW)	Min Difference (MW)	Average Difference (MW)			
TimeSeries-3	2.77	0	0.93			
Reactive Power Results						
Substation/Bus	Max Difference (MVAR)	Min Difference (MVAR)	Average Difference (MVAR)			
Voltage Angles Res	ults					
Substation/Bus	Max Difference (Degree)	M in Difference (Degree)	Average Difference (Degree)			
Dynamic State Analysis						
Frequency Results						
Substation/Bus	Max Difference (mHz)	M in Difference (mHz)	Average Difference (mHz)			
TimeSeries-1	17.19	0	7.48			
Bus Voltage Results	5					
Substation/Bus	Max Difference (KV)	M in Difference (KV)	Average Difference (KV)			
TimeSeries-2	2.81	0	0.43			
Line Flows Results						
Substation/Bus	Max Difference (MW)	M in Difference (MW)	Average Difference (MW)			
TimeSeries-3	63.45	0	35.8			
Reactive Power Re	sults					
Substation/Bus	Max Difference (MVAR)	Min Difference (MVAR)	Average Difference (MVAR)			

Analysis plots

0.08. 1010. 2010/01/21 02:00:41/200 00:00 10:00. 2010/01/21 02:00/21.740

Simplified parameters and

Searcher function

Simplified parameters

Modal analysis

Analysis Parameters 4				
~	Data Conditioning Options	ResamplingSettings:EnabledDataQualityFit		
	> Re-sampling Setting	Enabled		
	> Quality Filter	Enabled		
	> Stale Filter	Disabled		
	> Outlier Filter	Disabled		
	> Manipulation	Enabled		
	> Interpolation	Disabled		
	> Pass Filter	Disabled		
	> Kalman Filter	Disabled		
~	Algorithm Parameters	Algorithm :Yule_Walker_Spectral		
	Algorithm	Yule_Walker_Spectral		
	ProcessTimeWindow	60		
	StepInterval	5		
	AROrder	25		
	MAOrder	10 <u>()</u> × ()		
	NPointsARCoef	10		
	DampMax	30		
	✓ Frange	0.1.1		
	Min	0.1		
	Max	1		
	EnergyMin	0.001		
	Nfft	30		
	EstimatedMaxModesNumber	10		
	ModeTolerance	0.1		
~	Data Display Options	AmplitudeScaling_Mode :Absolute		
	AmplitudeScaling_Mode	Absolute		

Analysis Parameters 4		
~	Data Conditioning Options	ResamplingSettings: Disabled
	> Re-sampling Setting	Disabled
	> Quality Filter	Enabled
	Stale Filter	Disabled
	> Outlier Filter	Disabled
	Manipulation	Disabled
~	Interpolation	Disabled
	> Pass Filter Algorithm Parameters	Disabled
	DampMax	30
	✓ Frange	0.1,1
	Min	0.1
	Max	1
	EnergyMin	0.001

Intelligent Searcher Function

- Manual scanning of hundreds of signals for an event is not effective
- Searcher automatically scans signals for Oscillation and Event analysis
- Oscillation analysis:
 - > Detects the locations of two ends of Oscillation
 - > In Spectral analysis, signals are identified based on Coherency, Frequency and CSD
 - > In Ringdown analysis, signals are identified based on Frequency range and MSA
- Event analysis
 - > Signals are identified based on greatest swing and deviation
 - > Detects the locations which have greatest transients and deviations

Searcher function summary

Fault Analysis

Why PGDA for Fault Analysis?

- DFR data (Point on wave) from different substations can be compared by time synchronization
- Comparing the DFR and PMU data from different locations give sequence of events over wide area
- Phasor Converter can convert "Point on wave " signals to Phasor signals
- Symmetrical components can be used to analyze the unbalance in the system
- Smart report generation capability

7 step process for Fault Analysis in PGDA

- 1. Load the Data
- 2. If the data is of Point on wave, then convert to Phasors by using Phasor converter
- 3. Verify the Fault by plotting the Voltage Magnitude signals
- 4. Determine the Fault Location
- 5. Determine the Fault trajectory by Mho Characteristics
- 6. Check for Voltage or frequency violation
- 7. Generate the report

Fault analysis summary

- Q: How accurate are the PGDA fault location algorithms?
 Ans: All the fault location algorithms are according to IEEE_C37.114-2004.
- Q: Can PGDA store relay settings for Mho characteristics?
 Ans: PGDA V4 does not store the relay settings. It is in the roadmap.
- **Q**: What is the installation process?

Ans: One installer for PGDA. No pre-requisites required.

Q&A, Discussion

- 1. PGDA tool can be used for offline analysis of PMU data
- 2. 12 New major features have been implemented in PGDA
- 3. PGDA can create System Model validation report according to NERC MOD 033
- 4. Demonstration on Model validation, Searcher function, Fault analysis

- Release date: November 1, 2018.
 - > Website: www.electricpowergroup.net
- For one on one demo, Please contact: <u>chiluka@electricpowergroup.com</u>

Thank you for participating! If you have any questions regarding any part of the webinar, please contact us at <u>Contact@electricpowergroup.com</u>

Thank you!

251 S. Lake Ave., Ste. 300 Pasadena, CA 91101 626-685-2015

